在
上是减函数.
通过判断题,强调三点:
①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性.
②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数).
③函数在定义域内的两个区间A,B上都是增(或减)函数,一般不能认为函数在
上是增(或减)函数.
思考:如何说明一个函数在某个区间上不是单调函数?
〖设计意图〗让学生由特殊到一般,从具体到抽象归纳出单调性的定义,通过对判断题的辨析,加深学生对定义的理解,完成对概念的第三次认识.
三、掌握证法,适当延展
例 证明函数
在
上是增函数.
1.分析解决问题 针对学生可能出现的问题,组织学生讨论、交流.
证明:任取
, 设元
求差
变形
,
断号
∴
∴
即
∴函数
在
上是增函数. 定论
2.归纳解题步骤
引导学生归纳证明函数单调性的步骤:设元、作差、变形、断号、定论.
练习:证明函数
在
上是增函数.
问题:要证明函数
在区间
上是增函数,除了用定义来证,如果可以证得对任意的
,且
有